首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17892篇
  免费   1531篇
  国内免费   1922篇
  2024年   16篇
  2023年   192篇
  2022年   229篇
  2021年   773篇
  2020年   622篇
  2019年   757篇
  2018年   706篇
  2017年   577篇
  2016年   837篇
  2015年   1148篇
  2014年   1356篇
  2013年   1446篇
  2012年   1723篇
  2011年   1568篇
  2010年   1046篇
  2009年   907篇
  2008年   1045篇
  2007年   937篇
  2006年   844篇
  2005年   784篇
  2004年   688篇
  2003年   638篇
  2002年   582篇
  2001年   327篇
  2000年   264篇
  1999年   232篇
  1998年   192篇
  1997年   156篇
  1996年   119篇
  1995年   102篇
  1994年   88篇
  1993年   57篇
  1992年   65篇
  1991年   63篇
  1990年   38篇
  1989年   38篇
  1988年   32篇
  1987年   20篇
  1986年   13篇
  1985年   19篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   10篇
  1980年   7篇
  1979年   10篇
  1978年   4篇
  1972年   6篇
  1970年   5篇
  1965年   4篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
991.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells requires folding of two heptad-repeat regions (N-HR and C-HR) of gp41 into a trimer of N-HR and C-HR hairpins, which brings viral and target cell membranes together to facilitate membrane fusion. Peptides corresponding to the N-HR and C-HR of gp41 are potent inhibitors of HIV infection. Here we report new findings on the mechanism of inhibition of a N-HR peptide and compare these data with inhibition by a C-HR peptide. Using intact envelope glycoprotein (Env) under fusogenic conditions, we show that the N-HR peptide preferentially binds receptor-activated Env and that CD4 binding is sufficient for triggering conformational changes that allow the peptide to bind Env, results similar to those seen with the C-HR peptide. However, activation by both CD4 and chemokine receptors further enhances Env binding by both peptides. We also show that a nonconservative mutation in the N-HR of gp41 abolishes C-HR peptide but not N-HR peptide binding to gp41. These results indicate that there are two distinct sites in receptor-activated Env that are potential targets for drug or vaccine development.  相似文献   
992.
993.
Jung YT  Wu T  Kozak CA 《Journal of virology》2003,77(23):12773-12781
The wild mouse species most closely related to the common laboratory strains contain proviral env genes of the xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs). To determine if the polytropic proviruses of Mus spretus contain functional genes, we inoculated neonates with Moloney MLV (MoMLV) or amphotropic MLV (A-MLV) and screened for viral recombinants with altered host ranges. Thymus and spleen cells from MoMLV-inoculated mice were plated on Mus dunni cells and mink cells, since these cells do not support the replication of MoMLV, and cells from A-MLV-inoculated mice were plated on ferret cells. All MoMLV-inoculated mice produced ecotropic viruses that resembled their MoMLV progenitor, although some isolates, unlike MoMLV, grew to high titers in M. dunni cells. All of the MoMLV-inoculated mice also produced nonecotropic virus that was infectious for mink cells. Sequencing of three MoMLV- and two A-MLV-derived nonecotropic recombinants confirmed that these viruses contained substantial substitutions that included the regions of env encoding the surface (SU) protein and the 5' end of the transmembrane (TM) protein. The 5' recombination breakpoint for one of the A-MLV recombinants was identified in RNase H. The M. spretus-derived env substitutions were nearly identical to the corresponding regions in prototypical laboratory mouse polytropic proviruses, but the wild mouse infectious viruses had a more restricted host range. The M. spretus proviruses contributing to these recombinants were also sequenced. The seven sequenced proviruses were 99% identical to one another and to the recombinants; only two of the seven had obvious fatal defects. We conclude that the M. spretus proviruses are likely to be recent germ line acquisitions and that they contain functional genes that can contribute to the production of replication-competent virus.  相似文献   
994.
Yang TC  Dayball K  Wan YH  Bramson J 《Journal of virology》2003,77(24):13407-13411
We examined CD8(+) T-cell expansion and function following intramuscular immunization with a recombinant adenovirus. This study has identified a number of properties which may explain the strong immunogenicity of adenovirus vectors: (i) the ability to deliver large amounts of antigen into the lymphoid tissues, (ii) the ability to induce rapid expansion and migration of CD8(+) T cells throughout the lymphatics, and (iii) the ability to produce a sustained, high-level CD8(+) T-cell response.  相似文献   
995.
Hui EK  Barman S  Yang TY  Nayak DP 《Journal of virology》2003,77(12):7078-7092
Influenza type A virus matrix (M1) protein possesses multiple functional motifs in the helix 6 (H6) domain (amino acids 91 to 105), including nuclear localization signal (NLS) (101-RKLKR-105) involved in translocating M1 from the cytoplasm into the nucleus. To determine the role of the NLS motif in the influenza virus life cycle, we mutated these and the neighboring sequences by site-directed mutagenesis, and influenza virus mutants were generated by reverse genetics. Our results show that infectious viruses were rescued by reverse genetics from all single alanine mutations of amino acids in the H6 domain and the neighboring region except in three positions (K104A and R105A within the NLS motif and E106A in loop 6 outside the NLS motif). Among the rescued mutant viruses, R101A and R105K exhibited reduced growth and small-plaque morphology, and all other mutant viruses showed the wild-type phenotype. On the other hand, three single mutations (K104A, K105A, and E106A) and three double mutations (R101A/K102A, K104A/K105A, and K102A/R105A) failed to generate infectious virus. Deletion (Delta YRKL) or mutation (4A) of YRKL also abolished generation of infectious virus. However, replacement of the YRKL motif with PTAP or YPDL as well as insertion of PTAP after 4A mutation yielded infectious viruses with the wild-type phenotype. Furthermore, mutant M1 proteins (R101A/K102A, Delta YRKL, 4A, PTAP, 4A+PTAP, and YPDL) when expressed alone from cloned cDNAs were only cytoplasmic, whereas the wild-type M1 expressed alone was both nuclear and cytoplasmic as expected. These results show that the nuclear translocation function provided by the positively charged residues within the NLS motif does not play a critical role in influenza virus replication. Furthermore, these sequences of H6 domain can be replaced by late (L) domain motifs and therefore may provide a function similar to that of the L domains of other negative-strand RNA and retroviruses.  相似文献   
996.
In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Delta faa4Delta strain and encoding FAA1 and FAT1 in the faa1Delta fat1Delta strain. Multicopy FAA4 could not suppress the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2-mu plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p.  相似文献   
997.
Chen X  Li Y  Wei K  Li L  Liu W  Zhu Y  Qiu Z  He F 《The Journal of biological chemistry》2003,278(49):49022-49030
Hepatopoietin (HPO) is a novel hepatotrophic growth factor that stimulates hepatocyte proliferation by two pathways. In the first, intracellular HPO specifically modulates the activator protein-1 (AP-1) pathway through JAB1 (Jun activation domain-binding protein 1), whereas in the second, extracellular HPO triggers the mitogen-activated protein kinase pathway by binding its specific receptor on the cell surface. In this report we demonstrate that HPO is a flavin-linked sulfhydryl oxidase, and the invariant CXXC (Cys-Xaa-Xaa-Cys) motif in HPO is essential for the enzyme activity of HPO but not for its dimerization nor for its binding ability with JAB1. Two intramolecular disulfides were identified in HPO by mass spectrometry, one of which is formed by the redox CXXC cysteine residues. HPO site-directed mutants (Cys/Ser) at active sites, which lost sulfhydryl oxidase activity, could not increase c-Jun phosphorylation and failed to potentiate JAB1-mediated AP-1 activation. However, the mutants still have mitogenic stimulation and mitogen-activated protein kinase activation effects on HepG2 cells. Thus, it can be concluded that the potentiation role of HPO on AP-1 is dependent on its sulfhydryl oxidase activity.  相似文献   
998.
AMP-activated kinase (AMPK) is a fuel-sensing enzyme present in most mammalian tissue. In response to a decrease in the energy state of a cell AMPK is phosphorylated and activated by still poorly characterized upstream events. Exposure of bovine aortic endothelial cells (BAEC) to chemically synthesized ONOO- acutely and significantly increased phosphorylation of c-Src, PDK1, AMPK, and its downstream target, acetyl-CoA carboxylase (ACC), without affecting cellular AMP. This novel pathway for AMPK activation was confirmed by the use of pharmacological inhibitors and dominant-negative mutants. Exposure of BAEC to hypoxia-reoxygenation (H/R) caused a biphasic increase in AMPK and ACC phosphorylation, which was prevented by adenoviral overexpression of superoxide dismutase (SOD) or inhibition of nitric-oxide synthase (NOS) implicating a role of ONOO- formed during H/R. Furthermore, dominant-negative mutants of c-Src or kinase-defective PDK1 also blocked H/R-induced AMPK activation indicating that, as with addition of exogenous ONOO-, both c-Src and PI 3-kinase are upstream of AMPK. Moreover, H/R, like ONOO-, significantly increased co-immunoprecipitation of AMPK with c-Src, suggesting that ONOO- favors physical association of AMPK with upstream kinases. Taken together, our results indicate a novel pathway by which H/R via ONOO- activates AMPK in a c-Src-mediated, PI 3-kinase-dependent manner, and suggest that ONOO--induced activation of AMPK might thereby regulate metabolic enzymes, such as ACC.  相似文献   
999.
Heat shock protein 27 controls apoptosis by regulating Akt activation   总被引:16,自引:0,他引:16  
Activation of the serine-threonine kinase Akt by cytokines, chemokines, and bacterial products delays constitutive neutrophil apoptosis, resulting in a prolonged inflammatory response. We showed previously that Akt exists in a signaling complex with p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-2), and heat shock protein-27 (Hsp27); and Hsp27 dissociates from the complex upon neutrophil activation. To better understand the regulation of this signaling module, the hypothesis that Akt phosphorylation of Hsp27 regulates its interaction with Akt was tested. The present study shows that Akt phosphorylated Hsp27 on Ser-82 in vitro and in intact cells, and phosphorylation of Hsp27 resulted in its dissociation from Akt. Additionally, the interaction between Hsp27 and Akt was necessary for activation of Akt in intact neutrophils. Constitutive neutrophil apoptosis was accelerated by sequestration of Hsp27 from Akt, and this enhanced rate of apoptosis was reversed by introduction of constitutively active recombinant Akt. Our results define a new mechanism by which Hsp27 regulates apoptosis, through control of Akt activity.  相似文献   
1000.
This report focuses on the identification of the molecular mechanisms of ethanol-induced in vitro angiogenesis. The manipulation of angiogenesis is an important therapeutic approach for the treatment of cancer, cardiovascular diseases, and chronic inflammation. Our results showed that ethanol stimulation altered the integrity of actin filaments and increased the formation of lamellipodia and filopodia in SVEC4-10 cells. Further experiments demonstrated that ethanol stimulation increased cell migration and invasion and induced in vitro angiogenesis in SVEC4-10 cells. Mechanistically, ethanol stimulation activated Cdc42 and produced H(2)O(2) a reactive oxygen species intermediate in SVEC4-10 cells. Measuring the time course of Cdc42 activation and H(2)O(2) production upon ethanol stimulation revealed that the Cdc42 activation and the increase of H(2)O(2) lasted more than 3 h, which indicates the mechanisms of the long duration effects of ethanol on the cells. Furthermore, either overexpression of a constitutive dominant negative Cdc42 or inhibition of H(2)O(2) production abrogated the effects of ethanol on SVEC4-10 cells, indicating that both the activation of Cdc42 and the production of H(2)O(2) are essential for the actions of ethanol. Interestingly, we also found that overexpression of a constitutive dominant positive Cdc42 itself was sufficient to produce H(2)O(2) and to induce in vitro angiogenesis. Taken together, our results suggest that ethanol stimulation can induce H(2)O(2) production through the activation of Cdc42, which results in reorganizing actin filaments and increasing cell motility and in vitro angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号